Handbook Of Optical Systems Metrology Of Optical

A Practical Guide to Optical Metrology for Thin Films

The measurement and characterisation of surface topography is crucial to modern manufacturing industry. The control of areal surface structure allows a manufacturer to radically alter the functionality of a part. Examples include structuring to effect fluidics, optics, tribology, aerodynamics and biology. To control such manufacturing methods requires measurement strategies. There is now a large range of new optical techniques on the market, or being developed in academia, that can measure areal surface topography. Each method has its strong points and limitations. The book starts with introductory chapters on optical instruments, their common language, generic features and limitations, and their calibration. Each type of modern optical instrument is described (in a common format) by an expert in the field. The book is intended for both industrial and academic scientists and engineers, and will be useful for undergraduate and postgraduate studies.

Practical Optical Dimensional Metrology

The state-of-the-art full-colored handbook gives a comprehensive introduction to the principles and the practice of calculation, layout, and understanding of optical systems and lens design. Written by reputed industrial experts in the field, this text introduces the user to the basic properties of optical systems, aberration theory, classification and characterization of systems, advanced simulation models, measuring of system quality and manufacturing issues. In this Volume Volume 3 focuses on the treatment of aberration. By deriving and applying image quality criteria, the reader is introduced to techniques to correct his or her optical system for aberrations and to optimize it under the chosen criteria. Thorough treatment is given to gradient and illumination systems as well as to the topic of tolerances. The volume is rounded off with a chapter on the integration of the correction scheme developed into the existing system. Finally the software package OPTALIX is introduced as an advanced solution for integrated quality control such manufacturing methods requires measurement strategies. There is now a large range of new optical techniques on the market, or being developed in academia, that can measure areal surface topography. Each method has its strong points and limitations. The book starts with introductory chapters on optical instruments, their common language, generic features and limitations, and their calibration. Each type of modern optical instrument is described (in a common format) by an expert in the field. The book is intended for both industrial and academic scientists and engineers, and will be useful for undergraduate and postgraduate studies.

Field Guide to Displacement Measuring Interferometry

Handbook of Optoelectronics offers a self-contained reference from the basic science and light sources to devices and modern applications across the entire spectrum of disciplines utilizing optoelectronic technologies. This second edition gives a complete update of the original work with a focus on systems and applications. Volume I covers the details of optoelectronic devices and techniques including semiconductor lasers, optical detectors and receivers, optical fiber devices, modulators, amplifiers, integrated optics, LEDs, and engineered optical materials with brand new chapters on silicon photonics, nanophotonics, and graphene optoelectronics. Volume II addresses the underlying system technologies enabling state-of-the-art communications, imaging, displays, sensing, data processing, energy conversion, and actuation. Volume III is brand new to this edition, focusing on applications in infrastructure, transport, security, surveillance, environmental monitoring, military, industrial, oil and gas, energy generation and distribution, medicine, and free space. No other resource in the field comes close to its breadth and depth, with contributions from leading industrial and academic institutions around the world. Whether used as a reference, research tool, or broad-based introduction to the field, the Handbook offers everything you need to get started. John P. Dakin, PhD, is professor (emeritus) at the Optoelectronics Research Centre, University of Southampton, UK. Robert G. W. Brown, PhD, is chief executive officer of the American Institute of Physics and an adjunct full professor in the Beckman Laser Institute and Medical Clinic at the University of California, Irvine.
homodyne and heterodyne sources. The concept of displacement measurement uncertainty is discussed with a practical example of calculating uncertainty budgets. For practicing engineers, this Field Guide will serve as a refresher manual for error sources and uncertainty budgets. For researchers, it will bring new insight to the way in which this technology can be useful in their field. For new engineers, researchers, and students, it will also serve as an introduction into basic alignment techniques for breadboard-based optical systems.

Handbook of Optical Systems, Volume 2

The state-of-the-art full-colored handbook gives a comprehensive introduction to the principles and the practice of calculation, layout, and understanding of optical systems and lens design. Written by reputed industrial experts in the field, this text introduces the user to the basic properties of optical systems, aberration theory, classification and characterization of systems, advanced simulation models, measuring of system quality and manufacturing issues. In this Volume Volume 1 gives a general introduction to the field of technical optics. Although part of the series, it acts as a fully self-standing book. With more than 700 full color graphs and it is a intuitive introduction for the beginner and a comprehensive reference for the professional. Table of Contents 1 Introduction 2 Paraxial optics 3 Dielectric interfaces 4 Materials 5 Raytracing 6 Photometry 7 Lightsources 8 Sensors and receivers 9 Theory of color 10 Optical systems 11 Aberrations 12 Waveoptics 13 Plates and prisms 14 Gratings 15 Special components 16 Testing Other Volumes Volume 2: Physical Image Formation Volume 3: Aberration Theory and Correction of Optical Systems Volume 4: Survey of Optical Instruments Volume 5: Advanced Physical Optics

Handbook of Optical Systems, Volume 3

Handbook of Optical Sensors provides a comprehensive and integrated view of optical sensors, addressing the fundamentals, structures, technologies, applications, and future perspectives. Featuring chapters authored by recognized experts and major contributors to the field, this essential reference: Explains the basic aspects of optical sensors and

Handbook of Optical Dimensional Metrology

This practical reference offers state-of-the-art coverage of speckle metrology and its value as a measuring technique in industry. Examining every important aspect of the field, Speckle Metrology; surveys the origin of speckle displacement and decorrelation; presents procedures for deformation analysis and shape measurement of rough objects; explains particle image velocimetry (PIV), the processing of PIV records, and the design requirements of PIV equipment; discusses the applications of white light speckle methods and the production of artificial speckles; describes the measurement of surface roughness with laser speckles and polychromatic speckles; illustrates semiautomatic and automatic methods for the analysis of Young's fringes; calculates the variation of Young's fringes with the change in the microrelief of the rough surface; and explicates hololenses for imaging and provides design details with aberration corrections for hololense systems. With over 1500 literature citations, tables, figures and display equations, Speckle Metrology is a resource for students and professionals in the fields of optical, mechanical, electrical and electronics engineering; applied physics; and stress analysis.

Handbook of Optical Metrology

The Handbook of Surface and Nanometrology explains and challenges current concepts in nanotechnology. It covers in great detail surface metrology and nanometrology and more importantly the areas where they overlap, thereby providing a quantitative means of controlling and predicting processes and performance. Trends and mechanisms are explained wit

Polarized Light and Optical Systems

Introduction to Optical Metrology examines the theory and practice of various measurement methodologies utilizing the wave nature of light. The book begins by introducing the subject of optics, and then addresses the propagation of laser beams through free space and optical systems. After explaining how a Gaussian beam propagates, how to set up a collimator to get a collimated beam for experimentation, and how to detect and record optical signals, the text: Discusses interferometry, speckle metrology, moiré phenomenon, photoelasticity, and microscopy Describes the different principles used to measure the refractive indices of solids, liquids, and gases Presents methods for measuring curvature, focal length, angle, thickness, velocity, pressure, and length Details techniques for optical testing as well as for making fiber optic- and MEMS-based measurements Depicts a wave propagating in the positive z-direction by ei(kz) - k2, as opposed to ei(kz - ?t) featuring exercise problems at the end of each chapter, Introduction to Optical Metrology provides an applied understanding of essential optical measurement concepts, techniques, and procedures.

Handbook of 3D Machine Vision

The state-of-the-art full-colored handbook gives a comprehensive introduction to the principles and the practice of calculation, layout, and understanding of optical systems and lens design. Written by reputed industrial experts in the field, this text introduces the user to the basic properties of optical systems, aberration theory, classification and characterization of systems, advanced simulation models, measuring of system quality and manufacturing issues. In this Volume Volume 4 presents a survey of
optical systems, based on the principles of image formation, optical system setup and quality control which are covered by the first three volumes. Starting with the human eye, the chapters discuss all systems, from telescopes and binoculars to projection, spectroscopic and illumination systems. All these systems are characterized and described using coherent schemes and criteria to provide readers with a thorough background for their own developments. Other Volumes Volume 1: Fundamentals of Technical Optics Volume 2: Physical Image Formation Volume 3: Aberration Theory and Correction of Optical Systems Volume 5: Advanced Physical Optics

Handbook of Optical Metrology

Annotation -- A new volume in the field's bestselling optics reference -- an entirely new opus focusing on x-ray, nonlinear, and vision optics -- Provides the same mix of tutorial writing with in-depth reference material that distinguished Volumes I & II.

Handbook of Plastic Optics

Handbook of Optical Metrology: Principles and Applications begins by discussing key principles and techniques before exploring practical applications of optical metrology. Designed to provide beginners with an introduction to optical metrology without sacrificing academic rigor, this comprehensive text: Covers fundamentals of light sources, lenses, prisms, and mirrors, as well as optoelectronic sensors, optical devices, and optomechanical elements Addresses interferometry, holography, and speckle methods and applications Explains Moiré metrology and the optical heterodyne measurement method Delves into the specifics of diffraction, scattering, polarization, and near-field optics Considers applications for measuring length and size, displacement, straightness and parallelism, flatness, and three-dimensional shapes This new Second Edition is fully revised to reflect the latest developments. It also includes four new chapters—nearly 100 pages—on optical coherence tomography for industrial applications, interference microscopy for surface structure analysis, noncontact dimensional and profile metrology by video measurement, and optical metrology in manufacturing technology.

Handbook of Laser Technology and Applications

Optical Metrology is a rapidly expanding field with both its scientific foundations and technological developments, being of major concern to measurements, quality control, non-destructive testing and in fundamental research. In order to define the state-of-the-art, and to evaluate pre sent accomplishments, whilst giving an appraisal of how each of the particular topics will evolve the Optical Metrology- anAdvancedStudy Institute was organized with a concourse of the world’s acknowledged experts. Thus, the Institute provided a forum for tutorial reviews blended with topics of current research in the form of a progressive and comprehensive presentation of recent promising developments, leading techniques and instrumentation in incoherent and coherent optics for Metrology, Sensing and Control in Science, Industry and Biomedicine. Optical Metrology is a very broad field which is highly inter disciplinary in its applications, and in its scientific and technolog ical background. It is related to such diverse disciplines as physical and chemical sciences, engineering, electronics, computer sciences, biological sciences and theoretical sciences, such as statistics. Although there was an emphasis on photomechanics and industrial applications, a marked diversity was relected in the different background and interests of the participants. The vitality and viability of the discipline was enhanced not only by the encouraging number of young scientists and industrialists participating and authoring, but also by the remarkably promising prospects found in the practical applications supported by advanced electronic hybridization.

Optical Measurement of Surface Topography

This book offers a genuinely practical introduction to the most commonly encountered optical and nonoptical systems used for the metrology and characterization of surfaces, including guidance on best practice, calibration, advantages and disadvantages, and interpretation of results. It enables the user to select the best approach in a given context. Most methods in surface metrology are based upon the interaction of light or electromagnetic radiation (UV, NIR, IR), and different optical effects are utilized to get a certain optical response from the surface; some of them record only the intensity reflected or scattered by the surface, others use interference of EM waves to obtain a characteristic response from the surface. The book covers techniques ranging from microscopy (including confocal, SNOM and digital holographic microscopy) through interferometry (including white light, multi-wavelength, grazing incidence and shearing) to spectral reflectometry and ellipsometry. The non-optical methods comprised tactile methods (e.g., stylus tip, AFM) as well as capacitive and inductive methods (capacitive sensors, eddy current sensors). The book provides: Overview of the working principles Description of advantages and disadvantages Currently achievable numbers for resolutions, repeatability, and reproducibility Examples of real-world applications A final chapter discusses examples where the combination of different surface metrology techniques in a multi-sensor system can reasonably contribute to a better understanding of surface properties as well as a faster characterization of surfaces in industrial applications. The book is aimed at scientists and engineers who use such methods for the measurement and characterization of surfaces across a wide range of fields and industries, including electronics, energy, automotive and medical engineering.

Optical Inspection of Microsystems

Handbook of Optical Metrology: Principles and Applications begins by discussing key principles and
techniques before exploring practical applications of optical metrology. Designed to provide beginners with an introduction to optical metrology without sacrificing academic rigor, this comprehensive text: Covers fundamentals of light sources, lenses, prisms, and mirrors, as well as optoelectronic sensors, optical devices, and optomechanical elements Addresses interferometry, holography, and speckle methods and applications Explains Moiré metrology and the optical heterodyne measurement method Delves into the specifics of diffraction, scattering, polarization, and near-field optics Considers applications for measuring length and size, displacement, straightness and parallelism, flatness, and three-dimensional shapes This new Second Edition is fully revised to reflect the latest developments. It also includes four new chapters—nearly 100 pages—on optical coherence tomography for industrial applications, interference microscopy for surface structure analysis, noncontact dimensional and profile metrology by video measurement, and optical metrology in manufacturing technology.

EUV Lithography

Focusing on the use of microlithography techniques in microelectronics manufacturing, this volume is one of a series addressing a rapidly growing field affecting the integrated circuit industry. New applications in such areas as sensors, actuators and biomedical devices, are described.

Handbook of Optomechanical Engineering

This handbook explains principles, processes, methods, and procedures of optical engineering in a concise and practical way. It emphasizes fundamental approaches and provides useful formulas and step-by-step worked-out examples to demonstrate applications and clarify calculation methods. The book covers refractive, reflective, and diffractive optical components; lens optical devices; modern fringe pattern analysis; optical metrology; Fourier optics and optical image processing; electro-optical and acousto-optical devices; spatial and spectral filters; optical fibers and accessories; optical fabrication; and more. It includes over 2,000 tables, flow charts, graphs, schematics, drawings, photographs, and mathematical expressions.

Optical Thin Films

A coherent overview of the current status of injection molded optics, describing in detail all aspects of plastic optics, from design issues to production technology and quality control. This updated second edition is supplemented by a chapter on the equipment and process of injection wells as well as a look at recent applications. The contributors, each one a leading expert in their discipline, have either a background in or strong ties to the industry, thus combining a large amount of practical experience. With its focus firmly set on practical applications, this is an indispensable reference for all those working in optics research and development.

Introduction to Optical Metrology

The field of optical metrology offers a wealth of both practical and theoretical accomplishments, and can cite any number of academic papers recording such. However, while several books covering specific areas of optical metrology do exist, until the pages herein were researched, written, and compiled, the field lacked for a comprehensive handbook, one providing an overview of optical metrology that covers practical applications as well as fundamentals. Carefully designed to make information accessible to beginners without sacrificing academic rigor, the Handbook of Optical Metrology: Principles and Applications discusses fundamental principles and techniques before exploring practical applications. With contributions from veterans in the field, as well as from up-and-coming researchers, the Handbook offers 30 substantial and well-referenced chapters. In addition to the introductory matter, forward-thinking descriptions are included in every chapter that make this a valuable reference for all those involved with optical metrology.

Handbook of Silicon Semiconductor Metrology

Where conventional testing and inspection techniques fail at the micro-scale, optical techniques provide a fast, robust, and relatively inexpensive alternative for investigating the properties and quality of microsystems. Speed, reliability, and cost are critical factors in the continued scale-up of microsystems technology across many industries, and optical techniques are in a unique position to satisfy modern commercial and industrial demands. Optical Inspection of Microsystems is the first comprehensive, up-to-date survey of the most important and widely used full-field optical metrology and inspection technologies. Under the guidance of accomplished researcher Wolfgang Osten, expert contributors from industrial and academic institutions around the world share their expertise and experience with techniques such as image correlation, light scattering, scanning probe microscopy, confocal microscopy,
fringe projection, grid and moiré techniques, interference microscopy, laser Doppler vibrometry, holography, speckle metrology, and spectroscopy. They also examine modern approaches to data acquisition and processing. The book emphasizes the evaluation of various properties to increase reliability and promote a consistent approach to optical testing. Numerous practical examples and illustrations reinforce the concepts. Supplying advanced tools for microsystem manufacturing and characterization, Optical Inspection of Microsystems enables you to reach toward a higher level of quality and reliability in modern micro-scale applications.

Handbook of Optical Systems, Metrology of Optical Components and Systems

Concise yet comprehensive, this highly acclaimed training manual and reference provides the many phases of inspection work and their application to today's manufacturing operations through a practical down-to-earth presentation. Discusses a range of manual and automatic measuring devices along with their specific functions and the specialized functions involved in their use. Analyzes the methods and duties of inspectors. Appropriate for use by inspection supervisors, plant managers, quality control engineers and subcontractors. Includes SPC and other data analysis methods for manufacturing applications. Provides detailed discussions of available measuring and quantitative systems. Compares important measuring and gaging systems.

Handbook of Optical Systems, Volume 1

The state-of-the-art full-colored handbook gives a comprehensive introduction to the principles and the practice of calculation, layout, and understanding of optical systems and lens design. Written by reputed industrial experts in the field, this text introduces the user to the basic properties of optical systems, aberration theory, classification and characterization of systems, advanced simulation models, measuring of system quality and manufacturing issues.

Handbook of Optical Metrology

Practical, user-oriented reference for engineers who must incorporate and specify coatings for filters, antiglare effects, polarization, or other purposes in optical or electro-optical systems design. It focuses on preparation techniques and characteristics of commercially available products and provides information needed to determine what type of filter is needed to solve a particular problem, what its limitations are, and how to care for it.

Handbook of Optics: Devices, measurements, and properties

A one-stop, concise guide on determining and measuring thin film thickness by optical methods. This practical book covers the laws of electromagnetic radiation and interaction of light with matter, as well as the theory and practice of thickness measurement, and modern applications. In so doing, it shows the capabilities and opportunities of optical thickness determination and discusses the strengths and weaknesses of measurement devices along with their evaluation methods. Following an introduction to the topic, Chapter 2 presents the basics of the propagation of light and other electromagnetic radiation in space and matter. The main topic of this book, the determination of the thickness of a layer in a layer stack by measuring the spectral reflectance or transmittance, is treated in the following three chapters. The color of thin layers is discussed in chapter 6. Finally, in chapter 7, the author discusses several industrial applications of the layer thickness measurement, including high-reflection and anti-reflection coatings, photolithographic structuring of semiconductors, silicon on insulator, transparent conductive films, oxides and polymers, thin film photovoltaics, and heavily doped silicon. Aimed at industrial and academic researchers, engineers, developers and manufacturers involved in all areas of optical layer and thin optical film measurement and metrology, process control, real-time monitoring, and applications.

Handbook of Optical Systems, Volume 2

Good optical design is not in itself adequate for optimum performance of optical systems. The mechanical design of the optics and associated support structures is every bit as important as the optics themselves. Optomechanical engineering plays an increasingly important role in the success of new laser systems, space telescopes and instruments, biomedical and optical communication equipment, imaging entertainment systems, and more. This is the first handbook on the subject of optomechanical engineering, a subject that has become very important in the area of optics during the last decade. Covering all major aspects of optomechanical engineering—from conceptual design to fabrication and integration of complex optical systems—this handbook is comprehensive. The practical information within is ideal for optical and optomechanical engineers and scientists involved in the design, development and integration of modern optical systems for commercial, space, and military applications. Charts, tables, figures, and photos augment this already impressive handbook. The text consists of ten chapters, each authored by a world-renowned expert. This unique collaboration makes the Handbook a comprehensive source of cutting edge information and research in the important field of optomechanical engineering. Some of the current research trends that are covered include:

Handbook of Microlithography, Micromachining, and Microfabrication: Micromachining and microfabrication

Containing more than 300 equations and nearly 500 drawings, photographs, and micrographs, this reference
surveys key areas such as optical measurements and in-line calibration methods. It describes cleanroom-based measurement technology used during the manufacture of silicon integrated circuits and covers model-based, critical dimension, overlay

Inspection and Gaging

With the ongoing release of 3D movies and the emergence of 3D TVs, 3D imaging technologies have penetrated our daily lives. Yet choosing from the numerous 3D vision methods available can be frustrating for scientists and engineers, especially without a comprehensive resource to consult. Filling this gap, *Handbook of 3D Machine Vision: Optical Metro*...

Handbook of Optoelectronics

Foreword by Nobel laureate Professor Theodor W. Hänisch of Ludwig-Maximilians-Universität München. Based on the authors’ experimental work over the last 25 years, *Laser-Based Measurements for Time and Frequency Domain Applications: A Handbook presents basic concepts, state-of-the-art applications, and future trends in optical, atomic, and molecular physics. It provides all the background information on the main kinds of laser sources and techniques, offers a detailed account of the most recent results obtained for time- and frequency-domain applications of lasers, and develops the theoretical framework necessary for understanding the experimental applications. After a historical introduction, the book describes the basic concepts and mathematical tools required for studying the physics of oscillators. It then discusses microwave and optical resonators, crucial aspects of operation and fundamental properties of lasers, and precision spectroscopy and absolute frequency metrology. It also focuses on microwave and optical frequency standards and explores current and potential research directions. Accessible to scientists, postdoc researchers, and advanced undergraduate students, this self-contained book gives a wide-ranging, balanced overview of the areas— including frequency standards and clocks, ultra-high-precision spectroscopy, quantum information, and environmental metrology—revolutionized by the recent advent of optical frequency comb synthesizers (OFCSs) based on femtosecond mode-locked lasers. The book is also a useful guide to cutting-edge research for manufacturers of advanced laser systems and optical devices.

Optical Metrology

Editorial Review Dr. Bakshi has compiled a thorough, clear reference text covering the important fields of EUV lithography for high-volume manufacturing. This book has resulted from his many years of experience in EUVL development and from teaching this subject to future specialists. The book proceeds from a historical perspective of EUV lithography, through source technology, optics, projection system design, mask, resist, and patterning performance, to cost of ownership. Each section contains worked examples, a comprehensive review of challenges, and relevant citations for those who wish to further investigate the subject matter. Dr. Bakshi succeeds in presenting sometimes unfamiliar material in a very clear manner. This book is also valuable as a teaching tool. It has become an instant classic and far surpasses others in the EUVL field. -- Dr. Akira Endo, Chief Development Manager, Gigaphoton Inc. Description Extreme ultraviolet lithography (EUVL) is the principal lithography technology aiming to manufacture computer chips beyond the current 193-nm-based optical lithography, and recent progress has been made on several fronts: EUV light sources, optics, metrology, contamination control, masks and mask handling, and resists. This comprehensive volume is comprised of contributions from the world’s leading EUVL researchers and provides all of the critical information needed by practitioners and those wanting an introduction to the field. Interest in EUVL technology continues to increase, and this volume provides the foundation required for understanding and applying this exciting technology. About the editor Dr. Vivek Bakshi previously served as a senior member of the technical staff at SEMATECH; he is now president of EUV Litho, Inc., in Austin, Texas.

Harnessing Light

The state-of-the-art full-colored handbook gives a comprehensive introduction to the principles and the practice of calculation, layout, and understanding of optical systems and lens design. Written by reputed industrial experts in the field, this text introduces the user to the basic properties of optical systems, aberration theory, classification and characterization of systems, advanced simulation models, measuring of system quality and manufacturing issues. In this Volume Volume 2 continues the introduction given in volume 1 with the more advanced texts about the foundations of image formation. Emphasis is placed on an intuitive while theoretically exact presentation. More than 400 color graphs and selected references on the end of each chapter support this undertaking. From the contents: 17 Wave equation 18 Diffraction 19 Interference and coherence 20 Imaging 21 Imaging with partial coherence 22 Three-dimensional imaging 23 Polarization 24 Polarization and optical imaging A1 Mathematical appendix Other Volumes Volume 1: Fundamentals of Technical Optics Volume 3: Aberration Theory and Correction of Optical Systems Volume 4: Survey of Optical Instruments Volume 5: Advanced Physical Optics

A Practical Guide to Surface Metrology

Polarized Light and Optical Systems presents polarization optics for undergraduate and graduate students in a way which makes classroom teaching relevant to current issues in optical engineering. This curriculum has been developed and refined for a decade and a half at the University of Arizona’s College of Optical Sciences. Polarized Light and Optical Systems provides a reference for the optical engineer and optical designer in issues related to building polarimeters, designing displays, and polarization critical optical systems. The central theme of Polarized Light and Optical Systems is a unifying
treatment of polarization elements as optical elements and optical elements as polarization elements.

Speckle Metrology

Handbook of Optical Systems, 5 Volume Set

Nanoelectronics is changing the way the world communicates, and is transforming our daily lives. Continuing Moore's law and miniaturization of low-power semiconductor chips with ever-increasing functionality have been relentlessly driving R&D of new devices, materials, and process capabilities to meet performance, power, and cost requirements. This book covers up-to-date advances in research and industry practices in nanometrology, critical for continuing technology scaling and product innovation. It holistically approaches the subject matter and addresses emerging and important topics in semiconductor R&D and manufacturing. It is a complete guide for metrology and diagnostic techniques essential for process technology, electronics packaging, and product development and debugging—a unique approach compared to other books. The authors are from academia, government labs, and industry and have vast experience and expertise in the topics presented. The book is intended for all those involved in IC manufacturing and nanoelectronics and for those studying nanoelectronics process and assembly technologies or working in device testing, characterization, and diagnostic techniques.

Optical Metrology

The state-of-the-art full-colored handbook gives a comprehensive introduction to the principles and the practice of calculation, layout, and understanding of optical systems and lens design. Written by reputed industrial experts in the field, this text introduces the user to the basic properties of optical systems, aberration theory, classification and characterization of systems, advanced simulation models, measuring of system quality and manufacturing issues. In this Volume Volume 3 focuses on the treatment of aberration. By deriving and applying image quality criteria, the reader is introduced to techniques to correct his or her optical system for aberrations and to optimize it under the chosen criteria. Thorough treatment is given to gradient and illumination systems as well as to the topic of tolerances. The volume is rounded off with a chapter on the integration of the correction scheme developed into the existing system. Finally the software package OPTALIX is introduced as an advanced solution for integrated quality management of optical systems. Other Volumes Volume 1: Fundamentals of Technical Optics Volume 2: Physical Image Formation Volume 4: Survey of Optical Instruments Volume 5: Advanced Physical Optics

Handbook of Optical Sensors

This comprehensive handbook gives a fully updated guide to lasers and laser technologies, including the complete range of their technical applications. This forth volume covers laser applications in the medical, metrology and communications fields. Key Features: • Offers a complete update of the original, bestselling work, including many brand-new chapters. • Deepens the introduction to fundamentals, from laser design and fabrication to host matrices for solid-state lasers, energy level diagrams, hosting materials, dopant energy levels, and lasers based on nonlinear effects. • Covers new laser types, including quantum cascade lasers, silicon-based lasers, titanium sapphire lasers, terahertz lasers, bismuth-doped fiber lasers, and diode-pumped alkali lasers. • Discusses the latest applications, e.g., lasers in microscopy, high-speed imaging, attosecond metrology, 3D printing, optical atomic clocks, time-resolved spectroscopy, polarization and profile measurements, pulse measurements, and laser-induced fluorescence detection. • Adds new sections on laser materials processing, laser spectroscopy, lasers in imaging, lasers in environmental sciences, and lasers in communications. This handbook is the ideal companion for scientists, engineers, and students working with lasers, including those in optics, electrical engineering, physics, chemistry, biomedicine, and other relevant areas.

Metrology and Diagnostic Techniques for Nanoelectronics

Due to their speed, data density, and versatility, optical metrology tools play important roles in today's high-speed industrial manufacturing applications. Handbook of Optical Dimensional Metrology provides useful background information and practical examples to help readers understand and effectively use state-of-the-art optical metrology methods. The book first builds a foundation for evaluating optical measurement methods. It explores the many terms of optical metrology and compares it to other forms of metrology, such as mechanical gaging, highlighting the limitations and errors associated with each mode of measurement at a general level. This comparison is particularly helpful to current industry users who operate the most widely applied mechanical tools. The book then focuses on each application area of measurement, working down from large area to medium-sized to submicron measurements. It describes the measurement of large objects on the scale of buildings, the measurement of durable manufactured goods such as aircraft engines and appliances, and the measurement of fine features on the micron and nanometer scales. In each area, the book covers fast, coarse measures as well as the finest measurements possible. Best practices and practical examples for each technology aid readers in effectively using the methods. Requiring no prior expertise in optical dimensional metrology, this handbook helps engineers and quality specialists understand the capabilities and limitations of optical metrology methods. It also shows them how to successfully apply optical metrology to a vast array of current engineering and scientific problems.

Laser-Based Measurements for Time and Frequency Domain Applications
The state-of-the-art full-colored handbook gives a comprehensive introduction to the principles and the practice of calculation, layout, and understanding of optical systems and lens design. Written by reputed industrial experts in the field, this text introduces the user to the basic properties of optical systems, aberration theory, classification and characterization of systems, advanced simulation models, measuring of system quality and manufacturing issues. In this Volume Volume 2 continues the introduction given in volume 1 with the more advanced texts about the foundations of image formation. Emphasis is placed on an intuitive while theoretically exact presentation. More than 400 color graphs and selected references on the end of each chapter support this undertaking. From the contents: 17 Wave equation 18 Diffraction 19 Interference and coherence 20 Imaging 21 Imaging with partial coherence 22 Three dimensional imaging 23 Polarization 24 Polarization and optical imaging 25 Mathematical appendix Other Volumes Volume 1: Fundamentals of Technical Optics Volume 3: Aberration Theory and Correction of Optical Systems Volume 4: Survey of Optical Instruments Volume 5: Advanced Physical Optics

Handbook of Optical Engineering

New material on computerized optical processes, computerized ray tracing, and the fast Fourier transform, Bragg sensors, and temporal phase unwrapping. * New introductory sections to all chapters. * Detailed discussion on lasers and laser principles, including an introduction to radiometry and photometry. * Thorough coverage of the CCD camera.

Handbook of Surface and Nanometrology

Optical science and engineering affect almost every aspect of our lives. Millions of miles of optical fiber carry voice and data signals around the world. Lasers are used in surgery of the retina, kidneys, and heart. New high-efficiency light sources promise dramatic reductions in electricity consumption. Night-vision equipment and satellite surveillance are changing how wars are fought. Industry uses optical methods in everything from the production of computer chips to the construction of tunnels. Harnessing Light surveys this multitude of applications, as well as the status of the optics industry and of research and education in optics, and identifies actions that could enhance the field's contributions to society and facilitate its continued technical development.

Copyright code : abb54c13fa6be45719ebd374f987b580